# Handheld Probes and Mini-Cameras for Intraoperative Guidance during Surgery

#### **Peter Knoll**

Dept. of Nuclear Medicine with PET Center Vienna, AUSTRIA

#### **Conflict of Interest Disclosure Form**

**NAME: Dr. Peter Knoll** 

AFFILIATION: Wilhelminenspital

In accordance with criterion 24 of document UEMS 2012/30 "Accreditation of Live Educational Events by the EACCME", all declarations of potential or actual conflicts of interest, whether due to a financial or other relationship, must be provided to the EACCME® upon submission of the application. Declarations also must be made readily available, either in printed form, with the programme of the LEE, or on the website of the organiser of the LEE. Declarations must include whether any fee, honorarium or arrangement for re-imbursement of expenses in relation to the LEE has been provided.

#### **DISCLOSURE**

I have no potential conflict of interest to report

## Intraoperative Gamma probes

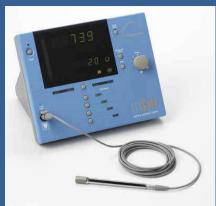
#### Clinical Applications\*

Breast, gastrointestinal, head-neck, gynecoligic, ureologic, thoracic, , NET, ...

#### Isotopes

Tc99m, Iodine 125, 131 Indium 111, Fluorine 18 Gallium 68

#### Radiation detectors


Scintillation detectors, Semiconductor Ionization detectors

#### Performance

Radial Sensitivity distribution
Spatial resolution
Energy resolution
Shielding and Collimation
Display



www.crystal-gmbh.com



http://www.neoprobe.com



www.carewise.com



http://www.gammaprobe.com/products/gamma-probes/



0.000

www.gammafinder.com



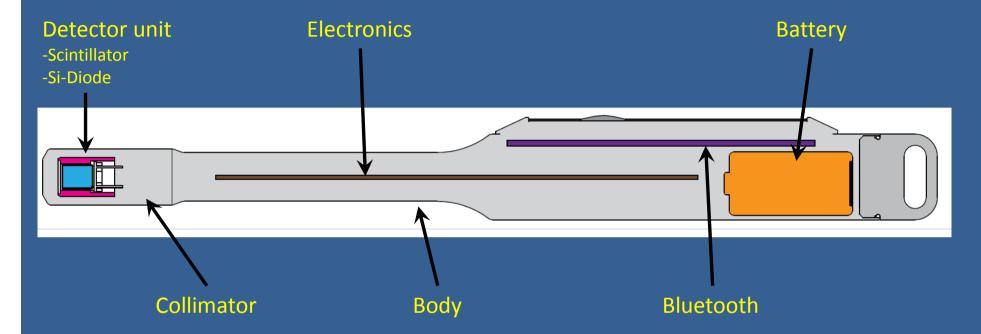
**Gamma Probe, RMD Instruments** 

http://www.medecine-nucleaire.lu

## Radioguided Sentinel Lymph Node (SLN) Surgery

#### **Basic idea:**

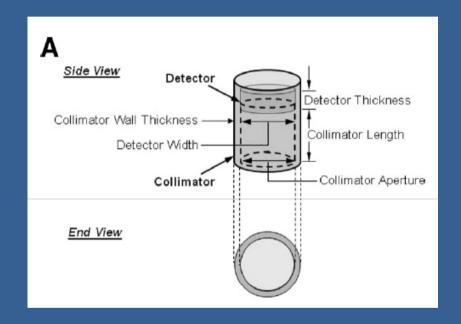
The tumor drains in a logical way through the lymphatic system.


The first node encountered (sentinel node) will most likely be the first affected by metastasis.

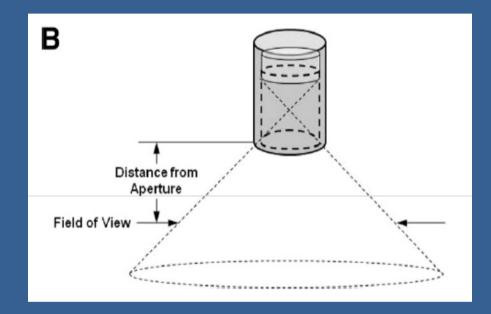
#### **Involved departments**

Nuclear medicine

Surgery, gynaecology


## Setup




Scintillation detectors: NaI(TI), CsI(TI), CsI(Na), BGO, LSO

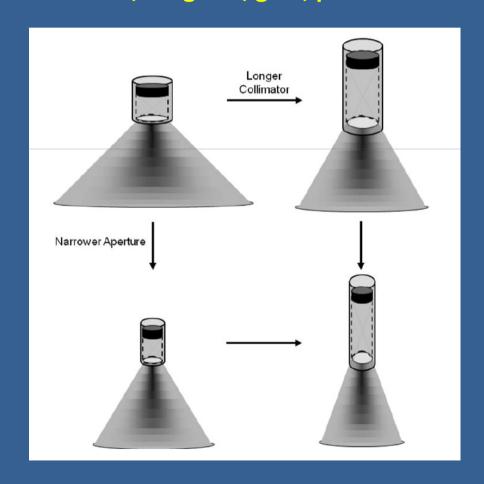
Semiconductor Ionization detectors: CdTe, CZT, HgI<sub>2</sub>

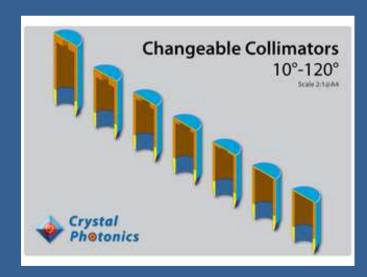
## Basic design of an intraoperative probe



The collimator is characterized by its aperature, length and wall thickness.

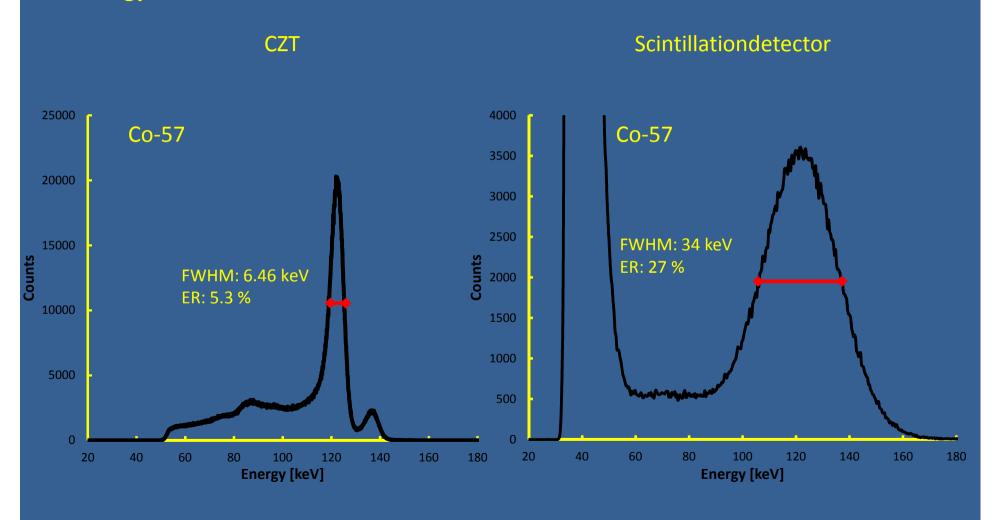



The probes FOV increases with increasing distance from the detector aperature


Heller S. and Zanzonico P.: Nuclear probes and intraoperative gamma cameras. Seminars in Nuclear Medicne 2011 May; 41(3):166-81.

### **Gamma Probes: Collimator**

The collimation influences the sensitiviy and spatial resolution.


Material: to maximize attenuation high-atomic number materials should be used: Lead, tungsten, gold, platinium





## **Energy resolution: Comparison**

Full-Width at Half-Maximum (FWHM) expressed as the percentage of the photopeak energy

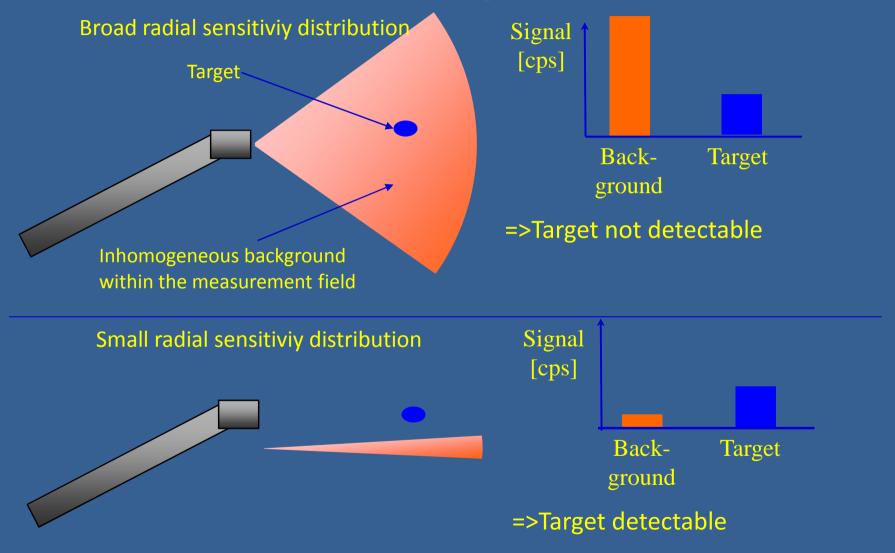


## Sensitivity

- Max. radionuclide uptake: 0.01-1 %
- Applying 99mTc-Nanocolloid: 0.05% to 0.005% uptake in lymphnode is found intraoperativly
- Activity: 80MBq
- Sensitivity measurement for SLN ≥ 5cps/kBq

- Measurement procedure:
   Directly on the tip of the probe or collimator
- Typical values (Wengenmair, H. et al. Nuklearmediziner; v. 22(4); Oct 1999; p. 271-280)
- : 23-0.3 cps/MBq

## Detector Performance: Radial sensitivity distribution


The sensitivity distribution is evaluated equidistant to the frontal radiation entrance window dependant on the polar angle.

The full width at half maximum (FWHM) of the distribution function is a good quality criterion for the detectability of lymph nodes in presence of non target radiation (injection depot, background).

With a broad measurement cone the background signal can exceed the target signal of the lymph node, which then cannot be detected.

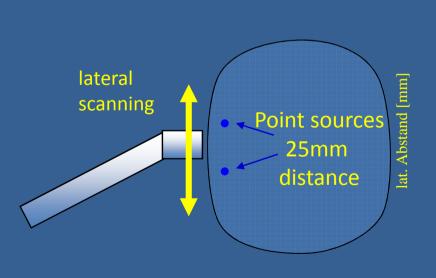
A small cone mainly reduces background maintaining a constant target signal. Therefore with increased background in the target area a smaller FWHM of radial sensitivity distribution is desired.

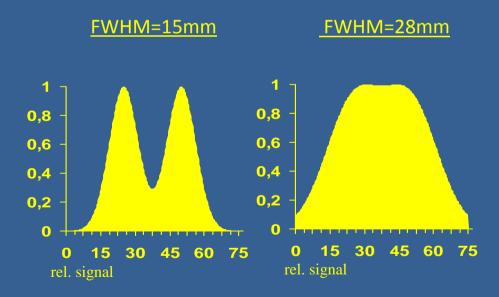
## Radial sensitivity distribution



Typ. Values (Wengenmair, H. et al. Nuklearmediziner; v. 22(4); Oct 1999; p. 271-280)

60° collimator: 23°, 30° collimator: 13°, 15° collimator: 10°

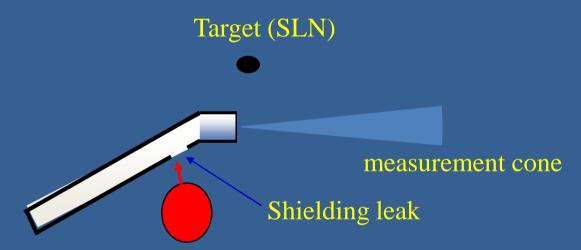

### **Detector performance: Spatial resolution**


#### **Measurement procedure:**

Probe is scanned laterally above a 9mmTc point source.

The FWHM gives the minimal distances at which two pint sources can be detected separately.

### Typical values: 24 mm - 8 mm



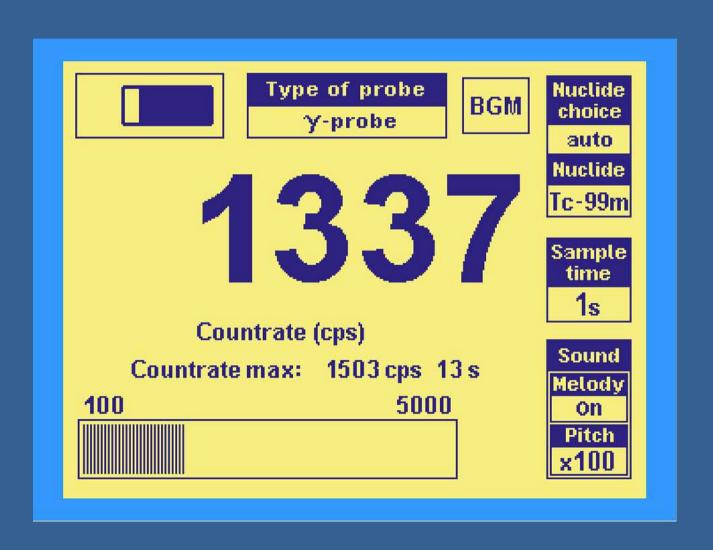



Typ. FWHM values (Wengenmair, H. et al. Nuklearmediziner; v. 22(4); Oct 1999; p. 271-280) 60° collimator: 12 mm, 30° collimator: 8 mm, 15° collimator: 5mm

## **Shielding**

Apparent SLN in the measurement cone by background activity nearby a shielding leak.




hot disturbing activity outside the measurement cone (z.B. Injektionsdepot)

Typ. values: 0.1-8.2%

Wengenmair, H. et al. Qualitätskriterien und Vergleich von Gammasonden zur Sentinel-Lymphonodektomie. Nuklearmediziner; v. 22(4); Oct 1999; p. 271-280

## **Display**

Correlation between accoustic tone and measurement signal



## Different measurement conditions

#### Melanoma:

Mostly large distance between SLN and injection spot, good uptake in the SLNs

#### Mamma carcinoma:

short distance between SLN and injection spot, poor uptake in the SLNs

|                       | Melanoma               | Mamma carcinoma | Prostate carcinoma | Parathyroid |
|-----------------------|------------------------|-----------------|--------------------|-------------|
| Sensitivity           | (+)                    | +               | +                  | +           |
| Spatial selectivity   |                        | +               | +                  | +           |
| Spatial resolution    | + (head,<br>neck,etc.) |                 |                    | +           |
| Shielding             |                        | +               | +                  | +           |
| Energy discrimination |                        | +               | +                  | +           |

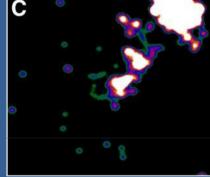
Wengenmair, H. et al. Qualitätskriterien und Vergleich von Gammasonden zur Sentinel-Lymphonodektomie. Nuklearmediziner; v. 22(4); Oct 1999; p. 271-280

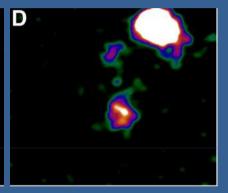
## Minimal requirements for an intraoperative probe system

| Criterion           | Minimal requirements                  |
|---------------------|---------------------------------------|
| Spatial selectivity | FWHM ≤ 40°                            |
| Spatial resolution  | FWHM ≤ 15 mm                          |
| Sensitivity         | >> 5cps/kBq                           |
| Shielding           | ≤ 0.1 % of maximum system sensitivity |
| Energy selection    | energy selection possible             |
| Display             | Acoustic, digital/analoue             |

Wengenmair, H.. Et al. Qualitätskriterien und Vergleich von Gammasonden zur Sentinel-Lymphonodektomie. Nuklearmediziner; v. 22(4); Oct 1999; p. 271-280  Intraopeartive gamma probes and additionaly "blue-dye" technique results in an overall sensitivity of more that 90% and a false negative rate of 8.4%\*.

Possible improvement by Small-field-of-view gamma camera


**Newman LA:** Current issues in the surgical management of breast cancer. Abstract. 2002 Breast Cancer Symposium **from Heller S. and Zanzonico P.:** Nuclear Probes and Intraoperative Gamma Cameras. Sem. Nucl. Med. 2011


#### Comparison of preoperative images with intraoperative images

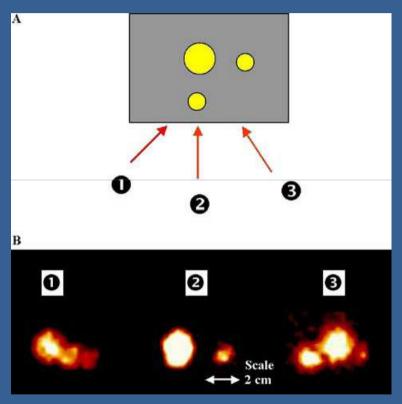
Lenka Vermeeren1 et al.: A Portable g-Camera for Intraoperative Detection of Sentinel Nodes in the Head and Neck Region. J Nucl Med 2010; 51:700–703










In patient with melanoma cranial to left ear, lateral planar lymphoscintigraphy after 2 h (A) showed 2 hot spots caudal to injection area and weak preauricular hot spot. All 3 hot spots had already been visualized on dynamic scans and on static planar images after 15 min.

On 2-dimensional and 3-dimensional (B) SPECT/CT fusion, 2 sentinel nodes were localized just ventral to sternocleidomastoid muscle and 1 preauricular sentinel node was localized within upper part of parotid gland. In concordance with SPECT/CT, intraoperative images before incision showed injection area and 3 sentinel nodes in same relation to each other (C).

After excision of first sentinel node, portable g-camera showed remaining sentinel nodes (D), which were then localized and removed.

## Why a portable gamma camera might be useful?





D. Koppelmann et al.: A newly developed intra-operative gamma camera: performance characteristics in a laboratory phantom study Eur J Nucl Med Mol Imaging (2005) 32:1217–1224

### **Small Field of View Gamma Camera**







**Intramedical imaging** 

www.gem-imaging.com









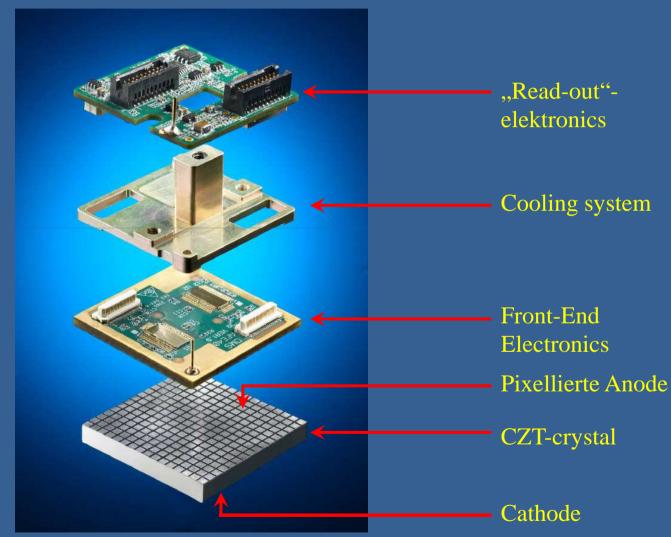
Kerrou K. etal: The usefulness of a preoperative compact imager, a hand-held gamma-camera for breast cancer sentinel node biopsy: final results of a prospective double-blind, clinical study. J Nucl Med. 2011 Sep;52(9):1346-53

## M. Tsuchimochi, K. Hayama: Intraoperative gamma cameras for radioguided surgery: technical characteristics, performance parameters, and clinical applications. Phys. Medica (2013) 29, 126-138

| Small gamma<br>camera | Detector            | Matrix size      | FOV (detector)    | Size (detector head)               | Weight  | Energy range          | Collimator                         |
|-----------------------|---------------------|------------------|-------------------|------------------------------------|---------|-----------------------|------------------------------------|
| IHGC                  | NaI (TI) PS-PMT     | 29 × 29          | 50 mm × 50 mm     | 64 mm × 64 mm × 76 mm              | 1.1 kg  | 30-300 keV            | Parallel-hole                      |
| POCI                  | YAP (Ce)            |                  | ∞ 24 mm           |                                    | 2 kg    | Tc-99m, I-125, In-111 | Parallel-hole                      |
| Minicam®              | CdTe                | $16 \times 16$   | 49 mm × 49 mm     | ø 95 mm height 150 mm              | 4756    | 20-200 keV            | Parallel-hole                      |
| MinicamII®            | CdTe                | $16 \times 16$   | 40 mm × 40 mm     | 70 mm × 170 mm × 250 mm            | 700 g   | 30-200 keV            | Parallel-hole                      |
| LumaGEM               | CsI (Na) PS-PMT     | 16 × 16          | 20 mm × 20 mm     |                                    | 15 3.50 | 30-300 keV            | Parallel-hole,<br>pinhole          |
| eZ-SCOPE®             | CdZnTe              | 16 × 16          | 32 mm × 32 mm     | $60~mm \times 60~mm \times 220~mm$ | 800 g   | 71-364 keV            | Parallel-hole,<br>pinhole, coded a |
| Second POCI           | CsI (Na) IPSD       | $50 \times 50$   | ø 40 mm           | ø 95 mm height 90 mm               | 1.2 kg  | 105-175 keV           | Parallel-hole                      |
| Sentinella 102®       | CsI (Na) PS-PMT     | $300 \times 300$ | 40 mm × 40 mm     | 8 cm × 9 cm × 15 cm                | 1 kg    | 50-200 keV            | Pinhole                            |
| GE camera             | CdZnTe              | $16 \times 16$   | 40 mm × 40 mm     | Height 150 mm                      | 1.2 kg  | 40-200 keV            | Parallel-hole                      |
| CarollReS             | Gd2SiO5 (Ce) PS-PMT |                  | 50 mm × 50 mm     | 78 mm × 78 mm × 275 mm             | 2.49 kg |                       | Parallel-hole                      |
| HRC                   | CsI (Tl) PS-PMT     | $20 \times 20$   | 49 mm × 49 mm     |                                    | 2 kg    |                       | Parallel-hole                      |
| MediPROBE             | CdTe                | $256 \times 256$ | 14 mm × 14 mm     | $200~mm \times 70~mm \times 30~mm$ | 1.5 kg  |                       | Pinhole                            |
| SSGC (prototype)      | CdTe                | $32 \times 32$   | 44.8 mm × 44.8 mm | 152 mm × 166 mm × 65 mm            | 2.7 kg  | 550 keV maximum       | Parallel-hole                      |
| SSGC (clinical)       | CdTe                | $32 \times 32$   | 45 mm × 45 mm     | 82 mm × 86 mm × 205 mm             | 1.4 kg  | 550 keV maximum       | Parallel-hole                      |

**Detector:** Nal, CZT, YAP, CdTe, Csl, etc.

**Matrix size:** 16x16 – 256 x 256


**FOV:** 14x14 – 50 x 50 mm

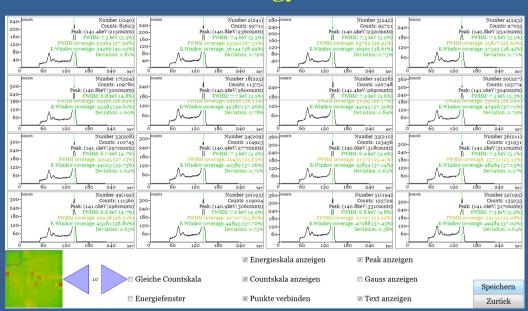
Weight: 700 g - 2200 kg

## Handheld-gamma camera

CrystalCam von CrystalPhotonics, Berlin






Standard energy range of the gamma camera is 40 – 250 keV.

## Acceptance test handheld gamma camera: Intrinisic measurements

#### **Intrinisic uniformity**

| Integral uniformity | 3.2% |
|---------------------|------|
| Differential        | 1.8% |
| uniformity          |      |

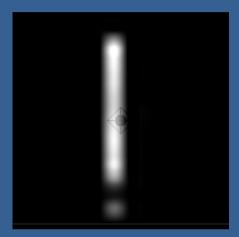
#### **Intrinisic energy resolution**



Average: 5.2%

## **System uniformity**

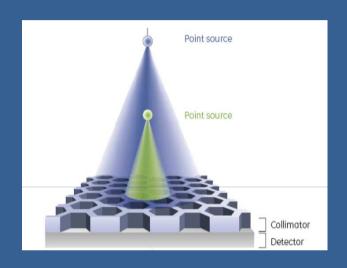





|      | int [%] | diff[%] |
|------|---------|---------|
| LEHR | 5.8     | 3.8     |
| MEGP | 5.3     | 3.5     |
| LEHS | 5.3     | 3.0     |

## Acceptance test handheld gamma camera: System resolution without scatter








| Collimator type | Distance 0 cm   |                 |                 |                 |
|-----------------|-----------------|-----------------|-----------------|-----------------|
|                 | FWHI            | M [mm]          | FWTM            | I [mm]          |
|                 | x-<br>direction | y-<br>direction | x-<br>direction | y-<br>direction |
| LEHR            | 1.93            | 2.03            | 3.49            | 3.66            |
| MEGP            | 1.91            | 1.89            | 3.46            | 3.42            |
| LEHS            | 2.27            | 2.98            | 5.17            | 7.74            |

System resolution without scatter: 0 mm distance, various collimators

## Acceptance test handheld gamma camera: System resolution without scatter for various distances



| Distance<br>from<br>the<br>detector | FWHM [mm]       |                 | FWTM [mm]       |                 |
|-------------------------------------|-----------------|-----------------|-----------------|-----------------|
|                                     | x-<br>direction | y-<br>direction | x-<br>direction | y-<br>direction |
| 0.0 cm                              | 1.93            | 2.03            | 3.50            | 3.66            |
| 2.5 cm                              | 3.74            | 3.89            | 6.88            | 8.07            |
| 5.0 cm                              | 5.02            | 4.78            | 9.00            | 10.60           |

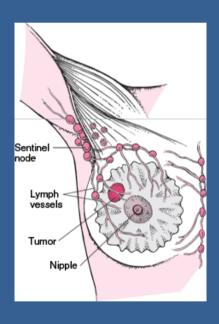
System resolution without scatter: various distances, LEHR collimator

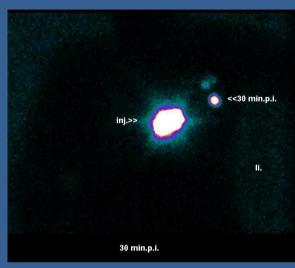
Data from Literature: 1.5-18mm\*

\* M. Tsuchimochi, K. Hayama: Intraoperative gamma cameras for radioguided surgery: technical characteristics, performance parameters, and clinical applications. Phys. Medica (2013) 29, 126-138

## Acceptance test handheld gamma camera: System planar sensitivity

The sensitivity measurements were done with 75 MBq\_99mTc that were filled in a bottle. The analysis of the acquired data was done with a software tool provided by the acquisition software


| Collimator type | cps/MBq |
|-----------------|---------|
| LEHR            | 237     |
| MEGP            | 177     |
| LEHS            | 554     |


System planar sensitivity measured for various collimators

Data from Literature: 6.6 – 1600 cps/MBq\*

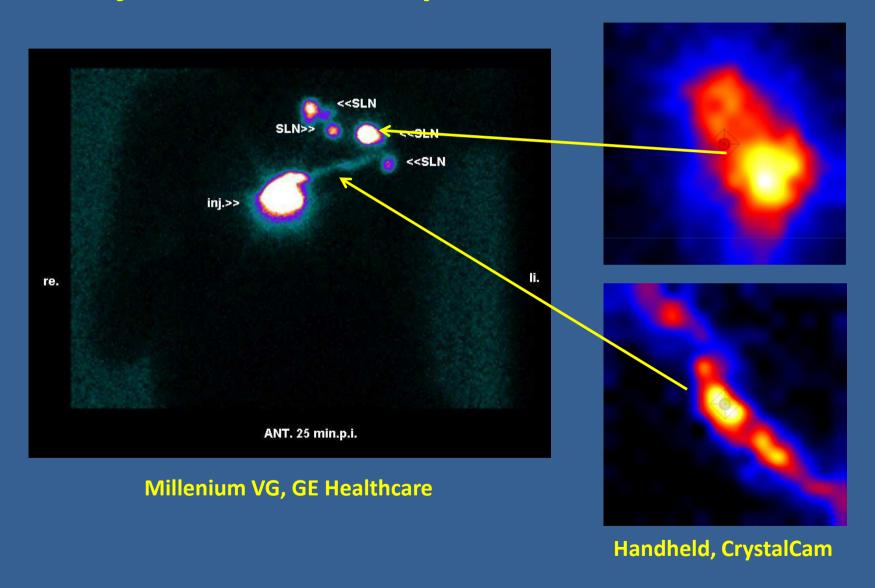
\* M. Tsuchimochi, K. Hayama: Intraoperative gamma cameras for radioguided surgery: technical characteristics, performance parameters, and clinical applications. Phys. Medica (2013) 29, 126-138

#### **Patient studies**

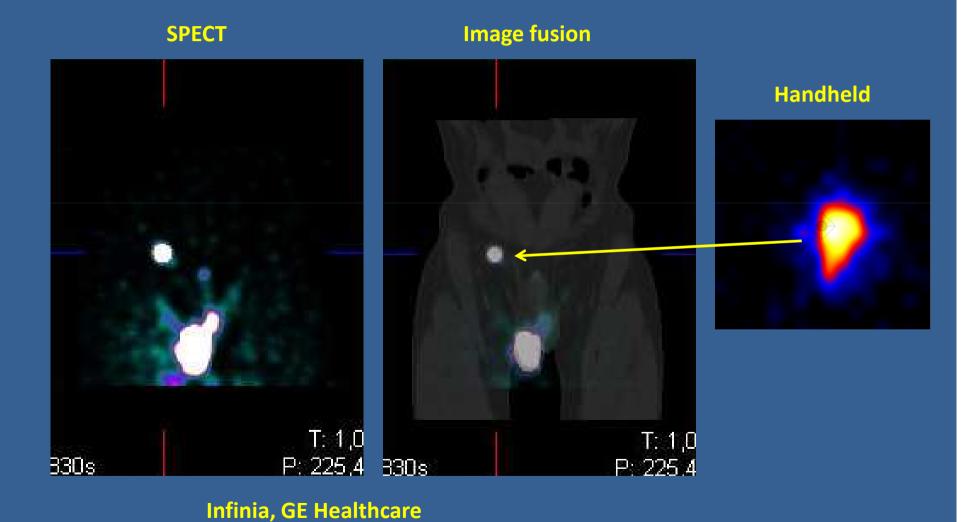







The sentinel lymph node (SLN) is defined as the first lymph node that drains the primary tumor basin.

The SLN can be mapped by using a sulphur-colloid radiotracer labeled with 99mTc that is injected near the primary tumour.


Approximately 18- 37 MBq of tracer is injected near the primary tumor, with up 74 kBq of activity accumulating in the sentinel lymph nodes after it drains through the lymphatic channel.

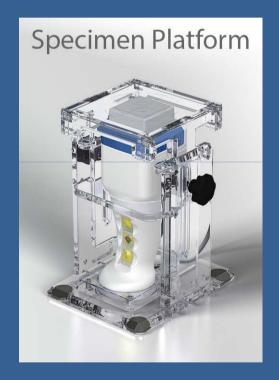
Till now 27 patients were imaged using the novel handheld gamma camera system.

## Pat, 70y, f, N. Mammae, left, Injection of 22 MBq 99m Tc Sentiscint

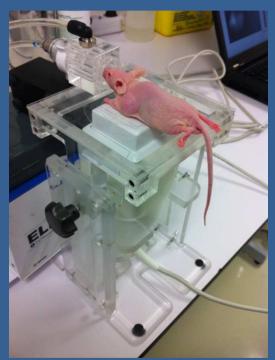


## Patient, 45Y, penis carcinoma





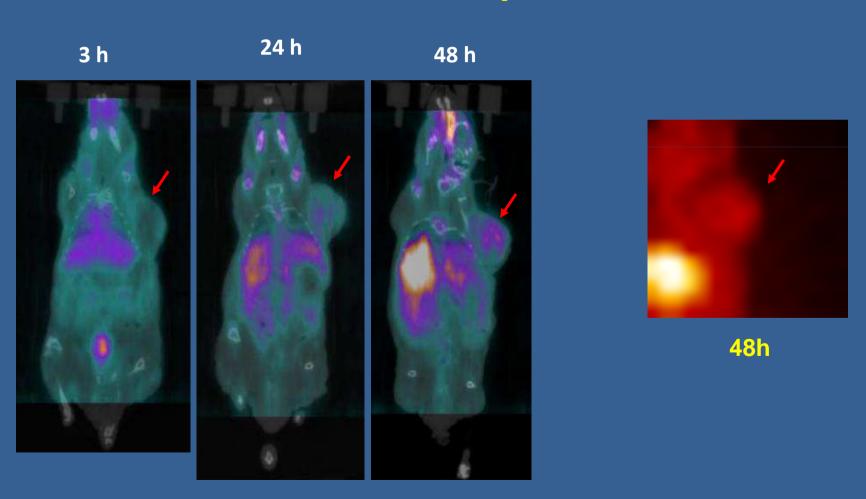




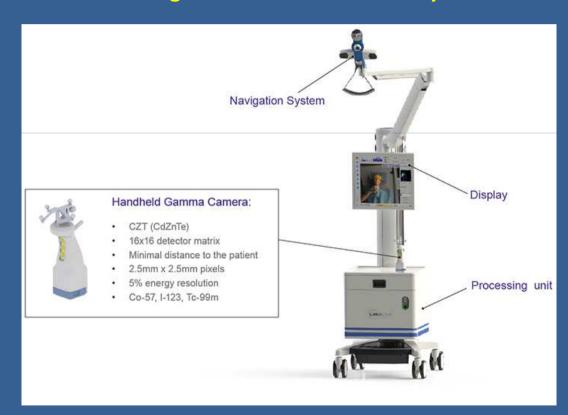


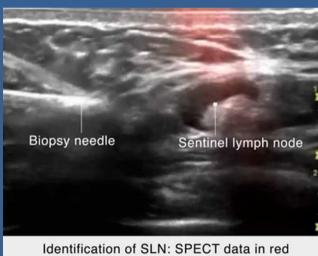





Handheld gamma camera setup





## **Ga67-DOTA+ Nanoparticle + PTR**



### SurgicEye

The declipse®SPECT Ultrasound Fusion consists of a high precise optical navigaton system, a gamma detector a high resolution ultrasound system.





**SurgicEye GmbH, Munich, Germany** 

## Thank you very much for your audience

